Search results for "single event effect"

showing 10 items of 15 documents

Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies

2021

Accelerated terrestrial neutron irradiations were performed on different commercial SiC power MOSFETs with planar, trench and double-trench architectures. The results were used to calculate the failure cross-sections and the failure in time (FIT) rates at sea level. Enhanced gate and drain leakage were observed in some devices which did not exhibit a destructive failure during the exposure. In particular, a different mechanism was observed for planar and trench gate MOSFETs, the first showing a partial gate rupture with a leakage path mostly between drain and gate, similar to what was previously observed with heavy-ions, while the second exhibiting a complete gate rupture. The observed fail…

Nuclear and High Energy PhysicsMaterials sciencepower MOSFETs01 natural sciences7. Clean energyelektroniikkakomponentitStress (mechanics)chemistry.chemical_compoundReliability (semiconductor)silicon carbidepuolijohteet0103 physical sciencesMOSFETSilicon carbideElectrical and Electronic EngineeringPower MOSFETSilicon Carbide; Power MOSFETs; neutrons; Single Event Effects; Single Event Burnout; gate damagesingle event burnoutLeakage (electronics)010308 nuclear & particles physicsbusiness.industrygate damageneutronsneutronitsingle event effectssäteilyfysiikkaNuclear Energy and EngineeringchemistryLogic gateTrenchtransistoritOptoelectronicsOtherbusinessIEEE Transactions on Nuclear Science
researchProduct

Key Contributions to the Cross Section of NAND Flash Memories Irradiated With Heavy Ions

2008

Heavy-ion irradiation of NAND flash memories under operating conditions leads to errors with complex, data-dependent signatures. We present upsets due to hits in the floating gate array and in the peripheral circuitry, discussing their peculiarities in terms of pattern dependence and annealing. We also illustrate single event functional interruptions, which lead to errors during erase and program operations. To account for all the phenomena we observe during and after irradiation, we propose an ldquoeffective cross section,rdquo which takes into account the array and peripheral circuitry contributions to the SEU sensitivity, as well as the operating conditions.

PhysicsNuclear and High Energy PhysicsHardware_MEMORYSTRUCTURESNAND FlashNAND gateHardware_PERFORMANCEANDRELIABILITYsingle event effectsHeavy ion irradiationradiation effects; single event effects; Floating gate memories; NAND FlashIonNuclear Energy and EngineeringGate arrayFloating gate memoriesradiation effectsElectronic engineeringIrradiationElectrical and Electronic EngineeringIEEE Transactions on Nuclear Science
researchProduct

Direct evidence of secondary recoiled nuclei from high energy protons

2008

The production of secondary recoiled particles from interactions between high energy protons and microelectronics devices was investigated. By using NAND Flash memories, we were able to directly obtain analog information on recoil characteristics. While our results qualitatively confirm the role of nuclear reactions, in particular of those with tungsten, a quantitative model based on Monte Carlo and device-level simulations cannot describe the observed results in terms of recoils from proton-W reactions. © 2006 IEEE.

PhysicsNuclear reactionNuclear and High Energy Physicsbusiness.industryDirect evidencePhysics::Instrumentation and DetectorsMonte Carlo methodNAND gatechemistry.chemical_elementHigh energy protonsSingle event effectsTungstenFlash memorySpace radiationNuclear physicsRecoilNuclear Energy and EngineeringchemistryFloating gate memoriesMicroelectronicsElectrical and Electronic EngineeringAtomic physicsbusinessNuclear Experiment
researchProduct

Isotopic Enriched and Natural SiC Junction Barrier Schottky Diodes Under Heavy Ion Irradiation

2022

The radiation tolerance of isotopic enriched and natural silicon carbide junction barrier Schottky diodes are compared under heavy ion irradiation. Both types of devices experience leakage current degradation as well as single-event burnout events. The results were comparable, although the data may indicate a marginally lower thresholds for the isotopic enriched devices at lower linear energy transfer (LET). Slightly higher reverse bias threshold values for leakage current degradation were also observed compared to previously published work.

Nuclear and High Energy Physicsionisoiva säteilySchottky diodesheavy ion irradiationleakage current degradationsingle event effectselektroniikkakomponentitsäteilyfysiikkaNuclear Energy and Engineeringsilicon carbidemonoisotopicpuolijohteetdioditElectrical and Electronic EngineeringDetectors and Experimental Techniquessingle event burnout
researchProduct

Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells

2017

Floating gate cells in advanced NAND Flash memories, with single-level and multi-level cell architecture, were exposed to low-energy proton beams. The first experimental evidence of single event upsets by proton direct ionization in floating gate cells is reported. The dependence of the error rate versus proton energy is analyzed in a wide energy range. Proton direct ionization events are studied and energy loss in the overlayers is discussed. The threshold LET for floating gate errors in multi-level and single-level cell devices is modeled and technology scaling trends are analyzed, also discussing the impact of the particle track size. peerReviewed

protonitNuclear and High Energy PhysicsProtonfloating gate devicesNAND gateFlash memories01 natural sciencesComputer Science::Hardware ArchitectureIonizationFlash memories; floating gate devices; protons; single event effects; Nuclear and High Energy Physics; Nuclear Energy and Engineering; Electrical and Electronic Engineering0103 physical sciencesHardware_ARITHMETICANDLOGICSTRUCTURESElectrical and Electronic Engineeringflash-muistit010302 applied physicsPhysicsRange (particle radiation)ta114ta213protons010308 nuclear & particles physicsbusiness.industryElectrical engineeringsingle event effectsNon-volatile memoryNuclear Energy and EngineeringLogic gateAtomic physicsbusinessEvent (particle physics)Energy (signal processing)IEEE Transactions on Nuclear Science
researchProduct

Failure Estimates for SiC Power MOSFETs in Space Electronics

2018

Silicon carbide (SiC) power metal-oxide-semiconductor field effect transistors (MOSFETs) are space-ready in terms of typical reliability measures. However, single event burnout (SEB) due to heavy-ion irradiation often occurs at voltages 50% or lower than specified breakdown. Failure rates in space are estimated for burnout of 1200 V devices based on the experimental data for burnout and the expected heavy-ion linear energy transfer (LET) spectrum in space. peerReviewed

Materials sciencesingle-event burnoutlcsh:Motor vehicles. Aeronautics. AstronauticsAerospace EngineeringBurnoutpower MOSFETs01 natural scienceschemistry.chemical_compoundReliability (semiconductor)silicon carbide0103 physical sciencesSilicon carbidePower semiconductor devicePower MOSFETheavy ionsavaruustekniikka010302 applied physicspower devicesreliabilityta114ta213010308 nuclear & particles physicsfailure ratessingle event effectsEngineering physicsPower (physics)säteilyfysiikkachemistrytransistoritField-effect transistorlcsh:TL1-4050VoltageAerospace
researchProduct

Microbeam SEE Analysis of MIM Capacitors for GaN Amplifiers

2018

Broad-beam and microbeam single-event effect tests were performed on metal–insulator–metal capacitors with three different thicknesses of silicon nitride (Si3N4) dielectric insulator: 250, 500, and 750 nm. The broad-beam tests indicated that the devices with the thicker, 500- and 750-nm dielectric did not have a greater breakdown voltage. The surrounding structures of the capacitor were suspected to be a possible cause. Microbeam techniques made it possible to localize the failure location for the 500- and 750-nm devices. The failure occurs in the air bridge structure connected to the top capacitor plate, which can therefore be considered as an edge effect, while for the 250-nm devices, the…

Nuclear and High Energy PhysicsMaterials scienceInsulator (electricity)Dielectrickondensaattorit01 natural sciencesmetal–insulator–semiconductor (MIS) deviceslaw.inventionelektroniikkakomponentitchemistry.chemical_compoundlaw0103 physical sciencesBreakdown voltageElectrical and Electronic EngineeringMetal–insulator–metal (MIM) devicessingle event effects (SEEs)ta114ta213010308 nuclear & particles physicsbusiness.industryAmplifierMicrobeamsingle event gate ruptureCapacitorNuclear Energy and EngineeringSilicon nitridechemistrysäteilyfysiikkaElectrodeOptoelectronicsbusinessIEEE Transactions on Nuclear Science
researchProduct

Measurements of Low-Energy Protons using a Silicon Detector for Application to SEE Testing

2021

A silicon detector with a fast electronics chain is used for the dosimetry of protons in the range 0.5-5 MeV at the Centro Nacional de Aceleradores (CNA) 3 MV Tandem laboratory in Seville, Spain. In this configuration, measurements can be performed in pulsed mode, using a digitizer to record event-by-event proton energy depositions. The distributions of deposited energy were obtained thanks to a calibration with an alpha source. Measurements of flux and deposited energy are used to enable single event effect (SEE) testing on selected static random access memories (SRAMs).

protonitNuclear and High Energy PhysicspiiSilicon detectorMaterials sciencebusiness.industrySingle event effectskalibrointiLow energysäteilyfysiikkaNuclear Energy and EngineeringilmaisimetdosimetritOptoelectronicsSilicon detectorElectrical and Electronic EngineeringDetectors and Experimental TechniquesLow-energy protonsbusinessIEEE Transactions on Nuclear Science ( Volume: 69, Issue: 3, March 2022)
researchProduct

Single Event Burnout of SiC Junction Barrier Schottky Diode High-Voltage Power Devices

2018

Ion-induced degradation and catastrophic failures in high-voltage SiC Junction Barrier Schottky (JBS) power diodes are investigated. Experimental results agree with earlier data showing discrete jumps in leakage current for individual ions, and show that the boundary between leakage current degradation and a single-event-burnout-like effect is a strong function of LET and reverse bias. TCAD simulations show high localized electric fields under the Schottky junction, and high temperatures generated directly under the Schottky contact, consistent with the hypothesis that the ion energy causes eutectic-like intermixture at the metal- semiconductor interface or localized melting of the silicon …

silicon carbidesingle-event burnoutthermal coefficients of silicon carbidepower diodessingle event effectsheavy ionsjunction barrier schottky (JBS) diode
researchProduct

Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs

2020

Heavy-ion microbeams are employed for probing the radiation-sensitive regions in commercial silicon carbide (SiC) vertical double-diffused power (VD)-MOSFETs with micrometer accuracy. By scanning the beam spot over the die, a spatial periodicity was observed in the leakage current degradation, reflecting the striped structure of the power MOSFET investigated. Two different mechanisms were observed for degradation. At low drain bias (gate and source grounded), only the gate-oxide (at the JFET or neck region) is contributing in the ion-induced leakage current. For exposures at drain–source bias voltages higher than a specific threshold, additional higher drain leakage current is observed in t…

Nuclear and High Energy PhysicsMaterials sciencemicrobeamsilicon carbide (SiC) vertical double-diffused power(VD)-MOSFETleakage current degradation01 natural sciencesDie (integrated circuit)chemistry.chemical_compoundpuolijohteet0103 physical sciencesMOSFETSilicon carbideNuclear Physics - ExperimentPower semiconductor deviceElectrical and Electronic EngineeringPower MOSFETsingle-event effect (SEE)010308 nuclear & particles physicsbusiness.industryionisoiva säteilyHeavy ion; leakage current degradation; microbeam; silicon carbide (SiC) vertical double-diffused power(VD)-MOSFET; single-event effect (SEE); single-event leakage current (SELC)JFETSELCMicrobeamSiC VD-MOSFET620single event effectsäteilyfysiikkaNuclear Energy and Engineeringchemistryheavy-ionOptoelectronicsddc:620Heavy ionbusinesssingle-event leakage current (SELC)Voltage
researchProduct